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Abstract
We establish the existence of homoclinic orbits for the near-integrable double
discrete sine-Gordon (dDSG) equation under periodic boundary conditions.
The hyperbolic structure and homoclinic orbits are constructed through the
Bäcklund transformation and Lax pair. A geometric perturbation method based
on Mel’nikov analysis is used to establish necessary criteria for the persistent of
temporally homoclinic orbits for the class of dDSG equations with dissipative
perturbations.
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AMS classification scheme numbers: 34Cxx, 37Kxx, 39-XX

1. Introduction

In recent years there has been remarkable progress on discrete integrable systems and associated
difference equations. This paper is concerned with the existence of homoclinic orbits of the
near-integrable double discrete sine-Gordon (dDSG) equation. A starting point is an integrable
lattice version of the SG equation, which is a nonlinear partial difference equation (P�E), i.e.
a system in which both the spatial—as well as the time variable is discrete. Discrete spacetime
model in soliton theory have acquired a prominent role in mathematical physics. The first
examples of such models were proposed by Hirota [10] as discrete analogues of the major
continuum soliton models. Subsequent development was carried out mostly by a Dutch group
(see Nijhoff and Capel [18] and references therein). The lattice sine-Gordon equation (dDSG)
that we want to investigate in this paper was first presented by Hirota [10] and therefore is
sometimes referred to as the Hirota equation. The particular discretization scheme of Hirota
is used by Orfanidis [19] to study the discrete nonlinear σ -model from a group-theoretical
viewpoint. We show that the dDSG equation with periodic boundary conditions in the discrete
space admits solutions which are homoclinic in the ‘discrete’ time to the hyperbolic fixed point.
We consider here the dDSG as a discrete dynamical system—a mapping with two indices n
andm. For a specialist in dynamical systems, the Hirota equation gives a family of examples of
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symplectic maps of finite-dimensional phase space—the so-called standard map [3,11]. Also,
the dDSG plays an important role in the discrete geometry. The continuum limit describes
surfaces with constant negative Gaussian curvature. The dDSG (classical) model possesses a
nice geometric interpretation which parallels the continuum theory to a surprising extent [4],
and which provides a useful guiding principle for the analysis of the model from a geometrical
viewpoint.

We present necessary criteria for the persistence of homoclinic structure of the dDSG
equation with small dissipative perturbations, tending to the continuous perturbed SG equation
for which we have established the persistence of homoclinic orbits and its temporal chaotic
behaviour (see [21] for a geometric approach, [16] for an analytic approach and [15] for a
numerical investigation). With the method being developed here we exploit two facts: first we
investigate the existence of homoclinic orbits associated with a hyperbolic fixed point of the
unperturbed dDSG through a Bäcklund transformation and second we establish the persistence
of these orbits under small dissipative perturbations. Our results are therefore interested for
the discreteK-surface with small perturbations (numerical simulations of discrete geometry),
related to the new directions of the combination lattice equations and non-integrability criteria.
We note that the dynamics of the dDSG equation is very close to the continuum model. If
the underlying dimension of some system under consideration is infinite (for example the SG
model), we are faced with two difficulties: first the techniques are largely unavailable for
performing the qualitative analysis and second the phenomena occurring can be considerably
more complicated. To resolve this apparent intractability of higher-dimensional problems,
techniques involving reductions to a lower-dimensional space are very attractive. Recently,
Haller has been developing an alternative perspective, based on the existence of multi-pulse
homoclinic solutions near resonance, which has been applied to finite-dimensional spatial
discretizations of the perturbed nonlinear Schrödinger (NLS) equations and to the partial
differential equations (PDEs) (see [9] and references therein).

This paper is organized in the following manner. In section 2, we formulate the problem. In
section 3, we review some basic concepts of the dDSG as a nonlinear P�E and its relationship
with discrete K-surfaces, we present the Lax pair of dDSG and find an analytic expression
of the homoclinic orbits through the Bäcklund transformation. We obtain an explicit formula
for the gradient of the individual constants of motion evaluated on the homoclinic orbits. In
section 4, we derive necessary conditions for the persistence of homoclinic solutions of the
dDSG equation under dissipative perturbations based on the Mel’nikov analysis and geometric
arguments of our problem.

2. Formulation of the problem

The sine-Gordon (SG) equation

uxx − utt = sin u (2.1)

is one of the simplest integrable PDEs with many physical and mathematical applications
and admits solutions for very special initial data and 2π -periodic boundary conditions in
space which are homoclinic in time. These homoclinic structures persist under dissipative
perturbations and the near-integrable equation possesses temporal chaotic behaviour [21].

When we integrate the SG equations numerically, one considers the spatial variable to be
a lattice of points, so the objects of study are sets on nonlinear ordinary differential equations
with time remaining a continuous independent variable. Such problems have a venerable place
in the study of nonlinear waves going back to the Frenkel–Kontorova model (discrete in space
version of the sine-Gordon equation), the Fermi–Pasta–Ulam model. In recent studies of the
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nonlinear dynamics of lattice systems consisting of coupled oscillators attention was paid to
time-periodic and spatially localized excitations—discrete breathers—a prototype of such a
nonlinear lattice is represented by the discrete NLS equations. Dealing with the discrete lattice
structure and thus with a network of coupled oscillators one faces the fact that most nonlinear
lattice systems are non-integrable (see [14] and references therein).

One of the aspects that make integrable equations very special is that are can find discrete
analogues of these equations, sine-Gordon, KdV for instance, tending to the original continuous
equations in special limits and that are integrable themselves. These discrete analogues can
be either ordinary or partial difference equations such as the MacMillan map [8] or mixed
differential-difference equations such as the Ablowitz–Ladik [1] and the Toda lattice [23].

We consider the integrable discrete analogue of equation (2.1):(
1 − 1

4h
2
)

tan 1
4

(
θnm+1 + θnm−1

) = (
1 + 1

4h
2
)

tan 1
4

(
θn+1
m + θn−1

m

)
(2.2)

as a discrete dynamical system and we establish the persistence of its homoclinic structure
under small dissipative perturbations.

Equation (2.2) (first appeared in Hirota [10]) is a complete integrable discretization of the
sine-Gordon equation (2.1), where θnm := u(mh, nh) denotes the approximation of u(x, t).
We rewrite (2.2) in the form

θn+1
m + θn−1

m = θnm+1 + θnm−1 + 2i ln

{
1 + 1

4h
2 exp

[
1
2 i(θnm+1 + θnm−1)

]
1 + 1

4h
2 exp

[ − 1
2 i(θnm+1 + θnm−1)

]
}

(2.3)

or using the identity Arg(z) = ϑ = 1
2i ln(zz̄−1), z = reiϑ , we rewrite equation (2.3) as follows:

θn+1
m + θn−1

m = θnm+1 + θnm−1 + 2i Arg
{
1 + 1

4h
2 exp

[
1
2 i(θnm+1 + θnm−1)

]}
. (2.4)

We consider the above equations (2.3) or (2.4) as a discrete evolution equation with respect to
index n (in the continuum limit approaches the time variable t):

θn+1
m = F (θn−1

m , θnm+1, θ
n
m−1) (2.5)

and we assume that θnm satisfies the periodic and even boundary conditions

θnm+M = θnm θnM−m = θnm M = 2p n ∈ Z m = 0, 1, . . . ,M − 1 h = 2

π
. (2.6)

Faddeev and Volkov [7] studied the symplectic structure of Hirota’s equation on a spatially
periodic lattice of even length M = 2p. We observe from (2.3) that θn+1

m only depends on
θnm−1, θ

n
m+1 and θn−1

m , there is no contribution from θnm. Assuming M = 2p, we specify initial
values {θ0

m,m = 1, 3, . . . , 2p − 1} and {θnm,m = 2, 4, . . . , 2p} and these values completely
determine the solution for all n ∈ Z. However, we may also consider the following initial
values {θ0

m,m = 2, 4, . . . , 2p} and {θ1
m,m = 1, 3, . . . , 2p−1} which together with (2.3) again

completely determine the solution for all times.
The phase space L of dDSG (2.3) is Z

2 with the interpretation that edge points in lightcone
directions. If we start with space-periodic initial data θ ij along a sawCn on the lightcone lattice
(see figure 1) then the local evolution given by (2.3) (or (2.4)) will determine the function
θ : L → R on the whole lattice.

In the smooth case the SG model describes the angle between the asymptotic line on
an asymptotically parametrized K-surface. Bobenko and Pinkal [4] studied the geometric
properties of the discrete K-surfaces (maps Z

2 → R
3) and proved that these surfaces are

parametrized by the second-order difference equation

θn+1
m + θn−1

m = θnm+1 + θnm−1 + 2i Arg
{
1 + 1

4h
2 exp

[
iθnm+1

]}
+ +2i Arg

{
1 + 1

4h
2 exp

[
iθnm−1

]}
(2.7)
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Figure 1. The geometry of the double discrete SG equation.

which is equivalent to the Hirota equation (2.3).
In this paper, we consider the perturbed dDSG equation:

θn+1
m + θn−1

m = θnm+1 + θnm−1 + 2i ln

{
1 + 1

4h
2 exp

[
1
2 i(θnm+1 + θnm−1)

]
1 + 1

4h
2 exp

[
1
2−i(θnm+1 + θnm−1)

]}

+ε

{
b θnm + c

θnm+1 − 2θnm + θnm−1

h2

}
(2.8)

where θnm satisfy the periodic boundary conditions (2.6) and 0 < ε � 1, b ∈ (0, b0), c ∈
(0, c0), h = 2π

M
< 1. When ε = 0, the unperturbed dDSG is a completely integrable lattice

equation. It has a spatially uniform solution θ̂ nm = π .
We study the homoclinic structure for the dDSG equation and derive an analytic expression

of the homoclinic orbits through the Bäcklund transformation and its Lax pair formulation.
The homoclinic orbits approach the hyperbolic fixed point θnm = π as n → ±∞.

The system (2.8) is the (classical) double discrete model of the following near-integrable
SG equation:

utt − uxx = sin u + ε(bu + cuxx) (2.9)

when the lattice spacing h tends to zero and the variables θ turn to the smooth function u(x, t),
with u(x + 2π, t) = u(x, t) = u(−x, t) and ε ∈ (0, ε1), b, c > 0 (cf [2,15,21]). Thus, system
(2.8) is of interest both as a perturbation of the completely integrable lattice equation (finite
dimension), and as an approximation to the PDE (2.9).

We shall prove the persistence of homoclinic orbits for the system (2.8). The Mel’nikov
method [12, 13, 17] is one of the techniques that has proved to be very useful in dynamical
systems. The method establishes a way to measure the distance between the stable and unstable
manifolds of a saddle-type invariant set for a perturbed integrable system that originally has
homoclinic structure.
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3. Integrability and homoclinic orbits

In this section, we present two results concerned with homoclinic structure of the dDSG
equation. First, we construct the analytic expression of homoclinic orbits based on Bäcklund
transformations of special solutions of the dDSG. Then, we obtain an explicit formula for the
gradient of an important invariant of motion which we will use to build the distance function
between the invariant manifolds.

3.1. Integrable background

The dDSG equation that we want to study is the following nonlinear P�E:

sin
1

4

(
θnm + θn+1

m+1 + θn+1
m + θnm+1

) = p

q
sin

1

4

(
θnm + θn+1

m+1 − θn+1
m − θnm+1

)
(3.1)

with boundary conditions (2.6). We note that θnm is the dynamical variable at site (n,m), n,m ∈
Z, and p, q ∈ C are lattice parameters. Equation (3.1) is an alternative form of (2.2) or (2.3).

First, we note that the dDSG (3.1) arises from a discrete action principle. The action for
the dDSG reads [5]

S =
∑
n∈Z

M−1∑
m=0

{
θnm+1(θ

n+1
m+1 + θnm)− 1

4F
(
2i(−1)m(θnm + θn+1

m+1) + σ2
)

+ 1
4F

(
2i(−1)m(θnm + θn+1

m+1) + σ1
)}

≡
∑
n∈Z

M−1∑
m=0

L(θnm, θ
n
m+1, θ

n+1
m+1, θ

n+1
m ) (3.2)

in which the function F is related to the dilogarithm function

F(x) =
∫ x

−∞
ln(1 + eiξ ) dξ

and where σ1 and σ2 are parameters related to the lattice parameters p, q:

eσ1 = q

p
eσ2 = p

q
.

The Euler–Lagrange equation for (3.2) which is obtained by variation of S with respect to the
variables θnm, i.e.

δS

δθnm
= 0

leads to the equation

θn+1
m + θn−1

m+1 + θnm+1 + θnm−1 +
i(−1)m

2
ln

{
1 + exp

[
σ1 + 2i(−1)m(θnm + θn+1

m+1)
]

1 + exp
[
σ2 + 2i(−1)m(θnm + θn+1

m+1)
]}

+
i(−1)m

2
ln

{
1 + exp

[
σ2 + 2i(−1)m(θnm + θn−1

m−1)
]

1 + exp
[
σ1 + 2i(−1)m(θnm + θn−1

m−1)
]} = 0 (3.3)

which is a consequence of equation (3.1).
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Another important aspect of the dDSG, directly related to the integrability of this system,
arises as the compatibility condition of an overdetermined linear system, Lax pair [19, 20]:

φnm+1(k) = Vn,m(k) φ
n
m (3.4a)

φn+1
m (k) = Un,m(k) φ

n
m (3.4b)

where k denotes the spectral parameter and Vn,m is given by

Vn,m(k) =




q

q − k

vnm+1

q − k

k2

q − k

1

vnm

q

q − k

vnm+1

vnm


 vnm = exp[2iθnm] (3.5)

and where Un,m is given by a similar matrix obtained from (3.5) by making the replacement
q → p and (n,m + 1) → (n + 1,m).

Let Mn,m(k, θ
n
m) be the fundamental matrix to the Lax pair, i.e. the matrix solution to

(3.4a) and (3.4b) with the initial conditionsM0 being a 2×2 identity matrix. The characteristic
polynomial

det
(
Mn,m(k, θ

n
m)− λI

) = 0 (3.6)

defines an invariant algebraic curve. The substitution

M = λ− traceMn,m(k)

2
reduces this curve to the hyperelliptic form [4]:

M2 =
(

traceMn,m(k)

2

)2

− detMn,m(k). (3.7)

We define the function � as

� : C × L −→ C

�(k, θnm) = traceMn,m(M; k, θnm). (3.8)

The spectral parameter k ∈ C fulfils the following condition:

−2D � �(k, θnm) � 2D (3.9)

where D is constant and a critical point kc of � satisfies

d�

dk

∣∣∣∣
(kc,θnm)

= 0. (3.10)

An important sequence of constant of motion Fj : L → C is defined by

Fj (θ
n
m) = 1

D
�(kc,j ; θnm).

3.2. Analytic expression of homoclinic orbits

We construct the homoclinic orbits for the dDSG through the Bäcklund transformation. For
more complete studies on Bäcklund transformation see the book [22]. The unperturbed
dDSG equation has an unstable hyperbolic fixed point at θ̂ nm = π . We utilize the Bäcklund
transformation for a concrete example, to generate homoclinic orbits through an iteration of
the transformation to incorporate all the unstable and stable modes. The homoclinic orbits for
the PDE SG have been constructed by Ercolani et al [6] through the Bäcklund transformation
of fixed solutions.
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Let φnm denote a fix solution of the Lax pair at (θnm, kd), where kd is the double critical
point of the function �, i.e. satisfies the condition (3.10) and �(kd; θnm) = ±2D. We define
the 2 × 2 transformation matrix ,n,m by

,n,m =
( −k̄ − αn,m βn,m

γn,m −k̄ − δn,m

)
(3.11)

where

αn,m = k

D

(|φn,1m |2 + k̄2|φn,2m |2) δn,m = ᾱn,m

βn,m = φn,1m φ̄n,2m

D
(k̄2 − |k|2) γn,m = −β̄n,m D = |φn,1m |2 + |k|2|φn,2m |2.

We define

Vnm = −p
(
k̄ + αn−1,m +

(
1 − k2

p2

)
+
p − k

vnm
βn,m

)(
β̄n−1,m − p − k

p

k̄ + ᾱn−1,m

vn−1
m

)−1

. (3.12)

Then

0n
m = π +

1

2i
ln Vnm vnm = e2iθnm (3.13)

and

1n
m(k) = ,n,m(kd) φ

n
m(k). (3.14)

Proposition 1. Let θnm denote a solution of the dDSG with the double critical point kd . We
denote φnm the general solution of the Lax pair at (θnm, kd). We define0n

m and1n
m(k) by (3.13)

and (3.14).

(a) 0n
m is also a solution of dDSG,

(b) 1n
m(k) solves the Lax pair (3.4a), (3.4b) at (0n

m, k),

(c) 0n
m is homoclinic to the fixed solution θ̂ nm = π , such that lim

n→±∞0
n
m = π .

Proof. We show that 1n
m(k) solves the Lax pair at (0n

m, k) provided that φnm solves (3.4a),
(3.4b) at (θnm, k). From the equations of Lax pair we obtain

1n
m+1 − Vn,m(0

n
m)1

n
m = [

,n,m+1Vn,m(θ
n
m)− Vn,m(0

n
m),n,m

]
1n
m

1n+1
m − Un,m(0

n
m)1

n
m = [

,n+1,mUn,m(θ
n
m)− Un,m(0

n
m),n,m

]
1n
m.

Hence if

,n,m+1Vn,m(θ
n
m)− Vn,m(0

n
m),n,m = 0 (3.15a)

,n+1,mUn,m(θ
n
m)− Un,m(0

n
m),n,m = 0 (3.15b)

the proposition is established. In the component form equations (3.15a) and (3.15b) together
the definitions (3.11)–(3.13) are equivalent to the eight algebraic equations. Indeed, the system

,n,m+1 = Vn,m(0
n
m),n,mV

−1
n,m(θ

n
m)

,n+1,m = Un,m(0
n
m),n,mU

−1
n,m(θ

n
m)
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yields the following set of algebraic equations:

P(k̄ + αn+1,m) =
(
k̄ + αn,m +

p − k

p

1

vn+1
m

βn,m

)
− Vn+1

m

p

(
γn,m + (p − k)

(k̄ + δn,m)

pvn+1
m

)

Pβn+1,m = (k̄ + αn,m)
vnm

p
+ βn,m

vnm

vn+1
m

− Vn+1
m

p

(
β̄n,m

vnm

p
+ (k̄ + ᾱn,m)

vnm

vn+1
m

)

Pγn+1,m = −k
2

p

1

Vnm

(
k̄ + αn,m +

βn,m

vn+1
m

p

p − k

)
+

Vn+1
m

Vnm

(
γn,m +

k̄ + δn,m
vn,m

p − k

p

)

P(k̄ + δn+1,m) = − k2

pVnm

(
(k̄ + αn,m)

vnm

p
+ βn,m

vnm

vn+1
m

)
+

Vn+1
m

Vnm

(
γn,m

vnm

p
+ (k̄ + δn,m)

vnm

vn+1
m

)

Q(k̄ + αn,m+1) =
(
k̄ + αn,m +

q − k

q

βn,m+1

vn+1
m

)
− Vnm+1

q

(
γn,m +

q − k

q

k̄ + δn,m
vnm+1

)

Qβn,m+1 =
(
(k̄ + αn,m)

vnm

q
+ βn,m

vnm

vnm+1

)
− Vnm+1

q

(
γn,m

vnm

q
+ (k̄ + δn,m)

vnm

vnm+1

)

Qγn,m+1 = − k2

qVnm

(
k̄ + αn,m +

q − k

q

βn,m

vnm+1

)
+

Vnm+1

Vnm

(
γn,m +

q − k

q

k̄ + δn,m
vnm+1

)

Q(k̄ + δn,m+1) = − k2

qVnm

(
(k̄ + αn,m)

vnm

q
+
vnm

vnm+1

βn,m

)
+

Vn+1
m

Vnm

(
γn,m

vnm

q
+ (k̄ + δn,m)

vnm

vnm+1

)

(3.16)

where

P =
(

1 − k2

p2

)−1

Q =
(

1 − k2

q2

)−1

.

The problem is reduced to checking these eight equations. From representation of αn.m, βn,m,
γn,m, δn,m and Vnm this is done explicitly. �

As mentioned, θ̂ nm = π is a solution of the dDSG with unstable direction. In this case the
potential function on the Lax pair becomes vnm = 1, thus the solutions of (3.4a), (3.4b) takes
the form

φn(−)m = (
1,−k)⊥λm− φn(+)m = (

1, k
)⊥
bnλm+ (3.17)

where

λ± = a ± ka

q
a := q

q − k
b := p + k

p − k
(3.18)

and k = kd is a double critical point of � this means that satisfies the conditions

�(k) = 2D
d

dk
�(k) = 0

with

�(k) =
(
a − ka

q

)m
+ bnk

(
a +

ka

q

)m
|Mn,m| := 2bnk

(
a2 −

(
ka

q

)2)m
and

detMn,M(φ
−, φ+) = D2 detMn,0 with D2 :=

M−1∏
m=0

(λ− λ+)
m. (3.19)
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Inserting (3.17) into (3.12) and (3.13), and making use of the identity tan−1 X =
1
2i ln

[
1+iX
1−iX

]
, we obtain the following analytic expression of homoclinic orbits:

0n
m = π + 4 tan−1

(
P cos

(
mhw1 + x

)
sech

(
nhw2 + τ

))
(3.20)

with

P 2 = sinh2 w2h

sin2 w1h

(
1 − 1

4h
2
)

coshw2h = (
1 + 1

4h
2
)

cosw1h h = 2π/M (3.21)

and lim
n→±∞0

n
m = π .

Remark 1. The expression of homoclinic orbits (3.20) with the conditions (3.21) satisfies the
dDSG equation. We rewrite the homoclinic solutions as follows:

0n
m = 4 tan−1

(
Anm

)
Anm = P cos

(
mhw1 + x

)
sech

(
nhw2 + τ

)
. (3.22)

Substitution of the solutions (3.22) into (2.2) and the identity tan−1 X = 1
2i ln

[
1+iX
1−iX

]
yields an

equation of the form

[
1 − 1

4h
2
]1 − Anm+1A

n
m−1

Anm+1 + Anm−1

= [
1 + 1

4h
2
]1 − An+1

m An−1
m

An+1
m + An−1

m

.

Using the conditions (3.21) and after some manipulations we obtain the desired identity.

Remark 2. The continuum limit of the discrete homoclinic orbits (3.20) coincides with the
homoclinic orbits of the field SG [6, 21].

3.3. The gradient of �(k, θnm)

The trace of the fundamental matrix of the Lax pair is an important invariant of motion for the
sine-Gordon equation. The corresponding invariants Fj (θ

n
m) for the dDSG system are defined

as

Fj (θ
n
m) = 1

D
�(kcj (θ

n
m), θ

n
m, θ

n
m+1) vnm = e2iθnm . (3.23)

We shall use the invariants Fj to build the Mel’nikov functions, in section 4.

Lemma 1. Let kcj (θ
n
m, θ

n
m+1) be a simple critical point of �;

δFj

δθnm
(θnm, θ

n
m+1) = 1

D

δ�

δθnm
(kcj (θ

n
m), θ

n
m, θ

n
m+1)

δFj

δθnm+1

(θnm, θ
n
m+1) = 1

D

δ�

δθnm+1

(kcj (θ
n
m), θ

n
m, θ

n
m+1)

where

δ�

δθnm
(k, θnm) = 2i

q − k
trace


M−1

n,m+1




0 0

k2

vnm
−q v

n
m+1

vnm


 Mn,mMn,M




δ�

δθnm+1

(k, θnm) = 2i

q − k
trace


M−1

n,m+1




0 vnm+1

0 q
vnm+1

vnm


 Mn,mMn,M




(3.24)

vnm = e2iθnm and Mn,m = [
φn(−)m , φn(+)m

]
, φn,(±)m = (φn(±,1)m , φn(±,2)m ) are two Bloch functions of

the Lax pair (3.4a), (3.4b) and |Mn,m| = detMn,m.
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Proof. Since kcj be a critical point, �′(kcj (θ
n
m), θ

n
m) = 0 and

δkcj

δθnm
= − 1

�′′
δ�′

δθnm

then kcj is a differential function

D
δFj

δθnm
(k, θnm) = δ�

δθnm

∣∣∣∣
k=kcj

+
δ�

δk

∣∣∣∣
k=kcj

δkcj

δθnm
= δ�

δθnm

∣∣∣∣
k=kcj

.

LetMn,m be the fundamental matrix of the Lax pair, for the special potential functionvnm = e2iθnm .
Variation of the vnm leads to the variational equation for the variation of Mn,m at fixed k:

Mn,m+1 = Vn,mMn,m

δMn,m+1 = Vn,mδMn,m + δVn,mMn,m

δVn,m =




0
1

q − k
δvnm+1

k2

q − k
δ

(
1

vnm

)
q

q − k
δ

(
vnm+1

vnm

)

.

Let δMn,m = Mn,mAn,m, where An,m is the 2 × 2 matrix to be determined.

δMn,m+1 = Mn,m+1An,m+1 = Vn,mMn,mAn,m + δVn,mMn,m

= Mn,m+1An,m + δVn,mMn,m

thus,

An,m+1 − An,m = M−1
n,m+1δVn,mMn,m

An,0 = 0.
(3.25)

Solving the system (3.25) we have,

δMn,m = Mn,M

[M−1∑
=1

M−1
n, δVn,−1Mn,−1

]
δMn,0 = 0.

Then,

δ�(k, θnm) = trace

{
Mn,M

[M−1∑
=1

M−1
n, δVn,−1Mn,−1

]}

thus, we obtain equations (3.24). Substitution the representation of Mn,m into (3.24) entails

δ�

δθnm
(k, θnm) = 2i

q − k

1

|Mn,m+1|
{
− k2

vnm

[
φ
n(+1)
m+1

(
φn(−1)
m φ

n(−1)
M + φn(+1)

m φ
n(−2)
M

)
+φn(−2)

m+1

(
φn(−1)
m φ

n(+1)
M + φn(+1)

m φ
n(+2)
M

)]
+q
vnm+1

vnm

[
φ
n(−1)
m+1

(
φn(−1)
m φ

n(+1)
M + φn(+2)

m φ
n(+2)
M

)
−φn(+1)

m+1

(
φn(−2)
m φ

n(−1)
M + φn(+2)

m φ
n(−2)
M

)]}
(3.26a)

δ�

δθnm+1

(k, θnm) = 2i

q − k

1

|Mn,m+1|
{
vnm+1

[
φn(+2)
m

(
φn(−2)
m φ

n(−1)
M + φn(+2)

m φ
n(−2)
M

)
−φn(−2)

m

(
φn(−2)
m φ

n(+1)
M + φn(+2)

m φ
n(+2)
M

)]
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+q
vnm+1

vnm

[
φn(−1)
m

(
φn(−2)
m φ

n(+1)
M + φn(+2)

m φ
n(+2)
M

)
−φn(+1)

m

(
φn(−2)
m φ

n(−1)
M + φn(+2)

m φ
n(−2)
M

)]}
. (3.26b)

Substitute (3.17) and (3.20) into (3.26a) and (3.26b), we obtain the expressions of δ�/δθnm
evaluated on the homoclinic orbits. This completes the proof of the lemma. �

4. Homoclinic orbits for the perturbed dDSG equation

Next, we will establish the persistence of homoclinic orbits (3.20) for the perturbed dDSG
equation (2.8). First, we show that the solution θ̂ nm = π is a singular fixed point of the
integrable dDSG equation and second, we prove that, for sufficiently small ε > 0, there exists
a solution homoclinic to θ̂ nm(ε).

4.1. Linearized analysis

In this subsection, we discuss the linear stability analysis of the fixed solutions of dDSG (2.8).
We note that if θnm solves equation (2.3) then (−1)n+mθnm is also a solution. Assume that
the small perturbation θ̂ nm(ε) are exponentially fast growing, as a consequence of the linearly
unstable modes of the continuum SG equation [21]

θnm = θ̂ nm(ε) + ηϕnm 0 < η � 1 (4.1a)

with

ϕnm = <n
k exp

[
iAkm

] Ak = 2πk

M
(4.1b)

where θ̂ nm(ε) = π + O(ε) is a solution of (2.8), M = 2p the total number of grid points in the
space interval (0, 1) and k = −M/2, . . . ,M/2 − 1.

Linearizing equation (2.8) we obtain

ϕn+1
m − 2ϕnm + ϕn−1

m

h2
− ϕnm+1 − 2ϕnm + ϕnm−1

h2
− 1

4

(
ϕn+1
m + ϕn−1

m + ϕnm+1 + ϕnm−1

)
= ε

{
b ϕnm + c

ϕnm+1 − 2ϕnm + ϕnm−1

h2

}
. (4.2)

After straightforward calculations, we take the following equation for eigenvalues <k:

<2
k − 2

(
cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

))
<k + 1 = 0 (4.3)

with

a = (
1 − 1

4h
2
)(

1 + 1
4h

2
)−1

h = 2π/M (4.4)

and

<k =
(

cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

)) ±
√∣∣∣∣

(
cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

))2

− 1

∣∣∣∣.
(4.5)

The stability condition |<k| � 1 becomes(
cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

))2

� 1. (4.6)
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It follows after some manipulations that the dispersion relation at Ak = 2πk/M may be written
as follows:

<k = cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

) ± 2i cos2 1
2Ak

√
EkFk (4.7)

for k = −M/2, . . . ,M/2 − 1, k �= 0, and

Ek := 1
4h

2 − tan2 1
2Ak + ε

1 − 1
4h

2

2 cos2 1
2Ak

(
1
2bh

2 − c sin2 1
2Ak

)
+ O(ε2)

Fk := 1 − 1
4h

2 tan2 1
2Ak + ε

1 − 1
4h

2

2 cos2 1
2Ak

(
1
2bh

2 − c sin2 1
2Ak

)
+ O(ε2).

(4.8)

The stability condition (4.6) is violated by the wavenumber Ak � 0 for k = 0. The unstable
wavenumbers satisfy(

cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

) − 1

)(
cos Ak

a
+ ε

(
1
2bh

2 − c sin2 1
2Ak

)
+ 1

)
> 0 (4.9a)

which implies the following:

tan2 1
2Ak <

1
4h

2

(
1 + ε(1 − 1

4h
2)

(
b

cos Ak/2
− c

2

))
+ O(ε2). (4.9b)

For k = 0, the perturbed fixed point θ̂ nm(ε) loses stability and is turned into an unstable
hyperbolic fixed point with

<0 = 1

a
+ ε 1

2bh
2 ± h

√(
1 + ε(1 − 1

4h
2)b

)(
1 + ε(1 − 1

4h
2) 1

4bh
2
)
. (4.10)

4.2. Mel’nikov method

With the geometric structures constructed in the previous sections, we start to construct orbits
for the perturbed dDSG (2.8) homoclinic to the saddle point θ̂ nm(ε). The construction is
composed of two steps. We start with an initial point in the unstable manifold of θ̂ nm(ε),
and first we show that the forward orbit enters the centre-stable manifold of the neighbourhood
Mε, if the parameters b, c are properly chosen. Second, we prove that the perturbed orbits
approach the fixed point θ̂ nm(ε) in forward time n → +∞. The Mel’nikov method is the main
tool.

We write the perturbed dDSG equation (2.8) in the form

θn+1
m = F (θn−1

m , θnm±1) + εG(θnm, θ
n
m±1) (4.11)

where G denotes the perturbation

G := b θnm + c
θnm+1 − 2θnm + θnm−1

h2
.

Before we discuss the persistent homoclinic orbits, we make some observations related to the
existence of an invariant subspace for the dDSG. In particular, the dDSG equation admits an
invariant subspace >. Indeed, if we consider the constraint

θnm+1 = θnm−1 = θnm m = 0, 1, . . . ,M − 1 M = 2p. (4.12)

On the plane > the perturbed system has a saddle fixed point θ̂ nm(ε) and in the full phase
space linear stability analysis shows that θ̂ nm(ε) is a saddle point and by the invariant manifold
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theory W u(θ̂nm(ε)) exists and is two dimensional (two unstable directions in and off the plane
>). W s(θ̂nm(ε)) also exists and has codimension two and W cs

ε has codimension one. The
intersection W u(θ̂nm(ε)) ∩W cs

ε will be one dimensional.
Thus, the unstable, stable and centre manifolds of the map F (cf (2.5)) associated with

θ̂ nm:

W u = {
θnm ∈ L : lim

n→−∞ F n(θnm) = θ̂ nm
}

W s = {
θnm ∈ L : lim

n→+∞ F n(θnm) = θ̂ nm
} (4.13)

withW s(θ̂nm(ε)) ⊂ W cs
ε and Mε being a neighbourhood such that the whole plane> lies inside

Mε.
For the perturbed system, we have that the local stable and unstable manifolds W s,u

ε,loc of

the perturbed point θ̂ nm(ε) are ‘ε-close’ to those of the unperturbed point θ̂ nm = π .
Consider the saddle fixed point θ̂ nm(ε) on the invariant plane> and we seek an orbit, not on

>, which is homoclinic to θ̂ nm(ε). We present a geometrical mean to establish the persistence of
homoclinic orbits for the near-integrable dDSG equation. Our method based on the Mel’nikov
measurement allows us to answer the question: is there any intersection between W u

loc(θ̂
n
m(ε))

and W s(Mε) ⊂ W cs
ε ?

The homoclinic orbits of the dDSG equation approach the subspace

> = {
θnm ∈ L : θnm+1 = θnm−1 = θnm, m = 0, 1, . . . ,M − 1

}
as n → +∞. Our analysis of the near-integrable dDSG equation begins with two observations:
First, when ε = 0, the lattice SG equation is a completely integrable system. Second, the
subspace > is an invariant space for perturbed dDSG. In each of these two cases (ε = 0 or
θnm ∈ >) the behaviour of solution θnm (as n ∈ Z) can be described completely. In the first case,
this description is described in section 3, through the Bäcklund transformation of the solution
π and the Lax pair, in the second case it is accomplished through a phase plane analysis of
the reduced map (discrete pendulum). In the jargon of the theory of dynamical systems our
method will be a form of a ‘local–global’ analysis, where at times the term ‘local’ will mean
close to the subspace> of the discrete pendulum, and at other times ‘local’ will mean close to
the integrable solutions, homoclinic with respect to the index n. In any event, throughout the
global arguments (the Mel’nikov method), control is achieved either because of proximity to
(a) the subspace > or (b) ε = 0.

The essence of the Mel’nikov method is as follows. Firstly, we establish the intersection
of W cs

ε and W u
ε,loc(θ̂

n
m(ε)) of the perturbed dDSG equation, so that for external parameters

in a fixed open set, there are orbits which tend to θ̂ nm(ε) when n → −∞ and approach >
when n → +∞. Secondly, we prove that these orbits also tend to θ̂ nm(ε) in forward ‘time’
(n → +∞).

Let hnm be the homoclinic orbits of the dDSG and hn,um (ε), hn,sm (ε) orbits lie onW u
ε,loc(θ̂

n
m(ε))

andW s
ε,loc(θ̂

n
m(ε)), respectively, ε-close to hnm. We give the following parametrization for these

orbits:

hn,um (ε) n ∈ Z− h0,u
m (ε) = q

u,ε
h ∈ W u

ε,loc

hnm(0) n ∈ Z h0
m(0) = qh

hn,sm (ε) n ∈ Z+ h0,s
m (ε) = q

s,ε
h ∈ W s

ε,loc.

(4.14)
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We define the following distance between qu,ε
h , q

s,ε
h along the tangent vector ν0 at the point h0

m:

d = distance(qu,ε
h , q

s,ε
h ) =

M−1∑
m=0

ν0(h
0
m) ·

(
h

0,u
m+1(ε)− h

0,s
m+1(ε)

)
= 〈ν0, h

0,u
m (ε)− h0,s

m (ε) 〉 = Du(ε)− Ds(ε) (4.15)

where the tangent vector ν0 is defined by the gradient of the function� (cf (3.24)). We define

Ds(ε) = 〈ν0(h
0
m), h

0,s
m (ε)− h0,u

m (ε)〉
Du(ε) = 〈ν0(h

0
m), h

0,u
m (ε)− h0,u

m (ε)〉.
(4.16)

The orbits hnm, h
n,u
m , hn,sm fulfil the equations

hn+1
m = F (hn−1

m , hnm+1, h
n
m−1)

hn+1,u
m (ε) = F (hn,um (ε)) + εG(hn,um (ε))

hn+1,s
m (ε) = F (hn,sm (ε)) + εG(hn,sm (ε))

(4.17)

where F and G are defined explicitly in (4.11). We study the motion on the unstable manifold.
From (4.17) we have

yn+1
m = d

dε
hn+1,u
m (ε)

∣∣
ε=0 = DF (hn,um )yn,um + G(hn,um ) (4.18)

then

〈νn+1
m , yn+1

m 〉 = 〈νn+1
m ,DF (hnm)y

n
m〉 + 〈νn+1

m ,G(hn,um )〉.
Using the integrability of the unperturbed system F and the mathematical induction, we obtain

〈ν0
m, y

0,u
m 〉 =

0∑
n=−∞

M−1∑
m=0

νnm G(hn−1
m+1) (4.19a)

and similarly for the stable manifold

〈ν0
m, y

0,s
m 〉 =

∞∑
n=1

M−1∑
m=0

νnm G(hn−1
m+1). (4.19b)

Then

d = ε(Du(0)− Ds(0)) + O(ε2) = εMF + O(ε2) (4.20)

where

MF :=
∑
n∈Z

M−1∑
m=0

νnm(h
n
m) · G(hn−1

m ) (4.21)

with νnm defined in (3.26a), (3.26b), and evaluated on the homoclinic orbit hnm.
The Mel’nikov function (4.21) becomes

MF (x, τ ;h,M) = bS1 + cS2 (4.22a)

with

S1(x, τ ;h,M) =
∑
n∈Z

M−1∑
m=0

δF
δθnm

(hnm) ·hn−1
m

S2(x, τ ;h,M) =
∑
n∈Z

M−1∑
m=0

δF
δθnm

(hnm) ·
hn−1
m+1 − 2hn−1

m + hn−1
m−1

h2
.

(4.22b)
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Setting MF = 0 we obtain an algebraic equation which describe a two-dimensional surface
on the external parameter space (b, c):

bS1 + cS2 = 0. (4.23)

We make the following observation, the only singularities of the homoclinic orbits0n
m (= hnm)

are simple poles at any point τθ ∈ iπ/2 + iπZ and therefore 0n
m is analytic at τθ + hk for

k ∈ Z \ {0}.
It is important to bear in mind that our model admits an invariant subspace > and the

persistent homoclinic orbit will leave the saddle point θ̂ nm(ε) near >, rapidly fly away and
return along a global orbit which is close to one of the integrable homoclinic orbits and must
approach the saddle point. In order to investigate this fact, we focus our attention to the
dynamics of the perturbed discrete pendulum in>. The dynamics of dDSG on> is governed
by the following standard map (so-called discrete pendulum):

θn+1 = −θn−1 + 2θn − 4 Arg
(
1 + 1

4h
2eiθn

)
+ εbθn (4.24)

or

f>(x, y) = (
y,−x + 2y − 4 Arg

(
1 + 1

4h
2eiy

))
+ ε

(
0, by

)
:= f0 + εf1.

We observe that the mapping f0 is an area preserving with the following generating function:

S0(x,X) = −xX +X2 + F̃ (X + σ) + F̃ (σ −X) (4.25)

with

F̃ (x) = 2i
∫ x

−∞
ln(1 + eiξ ) dξ eiσ = h2/4.

The solution θ̂ n = π is a saddle fixed point of the unperturbed map f0, since the residues
R of the Jacobian matrix Df0(π) passes through zero:

R = 1
4

(
2 − traceDf0(π)

) = h2

h2 − 4
< 0 0 < h < 1.

Another feature of the discrete pendulum is that it admits a one-parameter (τ ∈ R) family of
homoclinic orbits to the saddle point θ̂ n = π :

θn(τ ) = π + 4 tan−1
(

sinhw cos x sech(nwh + τ)
)

θn+1(τ ) = π + 4 tan−1
(

sinhw cos x sech((n + 1)wh + τ)
) (4.26)

with

w = sinh−1 µ and µ := h2
(

1
4h

2 − 1
)−1

(4.27)

One can verify after some manipulations that the expression (4.26) satisfies the map f0

and

lim
n→±∞ θ

n = π

with π being a saddle point of the map f0. A third aspect of the discrete pendulum system is
directly related to the integrability. The unperturbed map (4.24) has the following integral of
motion:

H(θn, θn−1) = 2(cos θn + cos θn−1) +
h2

4
cos(θn + θn−1) +

4

h2
cos(θn − θn−1). (4.28)

Moreover, the dynamics of (4.24) with ε small is ε-close to the dynamics of the discrete
pendulum. These properties of the map (4.24) are important in establishing the persistence of
homoclinic orbits for the dDSG equation.
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We have proved that there is a generic intersection between W u(θ̂nm(ε)) and W s(Mε) ⊂
Mε, so that for external parameters (b, c) in a fixed open set there are orbits hnm(ε) which tend
to θ̂ nm(ε) as n → −∞ and approach Mε in forward time n → +∞. Now, we prove that these
orbits in forward time also tend to θ̂ nm(ε).

Let

W s(θ̂nm(ε))|> = > ∩W s(θ̂nm(ε))

W s,u(θ̂nm(ε))|Mε
= Mε ∩W s,u(θ̂nm(ε))

and from the linearized analysis we have dimW s,u(θ̂nm(ε))|> = 1, codimW s(θ̂nm(ε))|Mε
= 1 in

Mε. Let qs,ε denote the intersection point of the orbit hnm(ε)with the boundary of the setU (let
U be a neighbourhood of the phase space of (4.24), then qs,ε ∈ ∂U ∩W s(Mε), with projection
point π(qs,ε) ∈ Mε. From the invariant manifolds theory, the points qs,ε and π(qs,ε) will
approach the same point in forward time. Also, we have

distance
(
qs,ε, π(qs,ε)

) = O(ε).
We measure the distance between the projection pointπ(qs,ε) and the pointqu,ε

> ∈ W u(θ̂nm(ε))|>
d := distance(π(qs,ε), q

u,ε
> ) = εMH(τ,w) + O(ε2). (4.29)

The Mel’nikov sum MH is built with the constant of motion H of the discrete pendulum (cf
(4.28)):

MH(τ ;h) =
∑
n∈Z

g(τ + nwh) (4.30)

where

g := b
∂H

∂θn

(
θ(τ + nwh)

)
θ(τ + nhw)

∂H

∂θn
= −2 sin θn − 1

4h
2 sin(θn + θn−1)− 4

h2
sin(θn − θn−1)

(4.31)

and θn(τ ) is given in (4.26). The above sum reduces to compute the residues of the function
g. In particular, the function that plays a significant role in the computation of the infinite
sum (4.30) is a complex function χ satisfying the following properties: χ is meromorphic in
C, is T i-periodic and w-periodic and the set of poles of χ is wZ + T iZ, all of them being
simple and of residue 1. Also, the function g appears in formula (4.30) verifying: (a) it is
analytic in R and has only isolated singularity in C; (b) it is T i-periodic for T > 0; and
(c) it fulfils |g(τ)| � A exp[−c| Re τ |] when | Re τ | → ∞ for some constants A, c > 0.
Then, the Mel’nikov function MH is analytic in R, only has isolated singularities in C and
is doubly periodic with periods h, T i. Moreover, MH(τ) can be expressed by the following
sum:

MH(τ ;h) = −
∑
z∈J

res
(
χT g; z

)
(4.32)

where

J := {
z ∈ C : 0 < Im z < T

}
.

The two conditions of the Melnikov function M = (MF ,MH)

MF = 0 and MH = 0 (4.33)

will select isolated values of two variables x, τ (x, τ parametrize the homoclinic orbits). This
will certainly be the case if, in addition to satisfying (4.33), x and τ also satisfy the transversality
condition:

detD(x,τ)M �= 0
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where D is the Jacobian of the Mel’nikov function. If the condition (4.33) is augmented by
this transversality condition then the homoclinic orbits corresponding to these selected isolated
values do, in fact, persist for 0 < ε � 1, w1, w2 given by (4.27) and b, c ∈ R. Thus there
exists an exactly transversal intersection point and the perturbed orbits hnm(ε) tend to θ̂ nm(ε) as
n → +∞. We can now state the result.

Proposition 2. Consider the near-integrable dDSG equation (2.8) with periodic boundary
conditions (2.6). Let M be an even fixed positive integer and h := 2π/M < 1 be a constant
real number. Then, there exists ε0 > 0 such that, for any fixed parameters {w1, w2, b, c, ε}
there are isolated values x0, τ0 of two variables x, τ at the Melnikov functionsMF ,MH satisfy
the following conditions:

MF = 0 and MH = 0

detD(x,τ)M �= 0.

The system (2.8) admits a homoclinic orbit θnm(ε) that is doubly asymptotic to them-independent
solution θn originated from θ̂ nm(ε) ∈ >.

5. Conclusions

We have developed a geometric method of studying the behaviour of homoclinic solutions
of the double discrete sine-Gordon equation with periodic boundary conditions under small
dissipative perturbations. We choose a class of dDSG equation to illustrate between the
methods of P�Es and those of dynamical systems theory (symplectic mappings) by which these
properties can be understood mathematically. Specifically, for the study of the global behaviour
for soliton P�Es, we advocate implementary intuition from the theory of dynamical systems
with methods natural from the P�Es. We have found an analytic expression of homoclinic
orbits for dDSG under periodic boundary conditions through the Bäcklund transformation and
the Lax pair formalism. We have shown that these orbits persist under dissipative perturbations
through the Mel’nikov criteria for discrete dynamical systems. Moreover, our results should
be interested in the construction of a new discrete surface and how these new geometric objects
can be obtained through numerical simulations and a comparison with the well known discrete
surfaces will be important. In future works, we will study the geometric principles and the
homoclinic structure in another important class of lattice equations obtained by extending the
dDSG equation to higher-order partial difference systems.
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